Bridge Glacier and the Life-Cycle of a Calving Glacier

This is part of a larger project (my thesis), but I wanted to share some of the preliminary findings.

Bridge Glacier in the summer of 2011. Photo by L. MacKenzie

Bridge Glacier in the summer of 2011. Photo by L. MacKenzie

Bridge Glacier is located in the Pacific Ranges of southwestern British Columbia, Canada, between the Coast and Chilcotin Mountains. The glacier is an outlet of the Lilloet Icefi eld, about 175 km north of Vancouver. Beyond being the source of my MSc thesis, Bridge Glacier is important because it is the source of the Bridge River, and the Bridge River Hydroelectric Project, which supplies British Columbia’s with 6-8% of its electrical supply, leading some to call it a giant “melting battery“.

Bridge Glacier is also an interesting study because the terminus floats in a lake, known unofficially as “Bridge Lake”, and discharges substantial amounts of ice in a process known as calving. This wasn’t always the case though. Until the late 1980s, Bridge Lake was relatively small and shallow. Since the 1991 however, Bridge Glacier has retreated substantially, and has allowed the lake to triple in size (up to 6 km2 in 2012). As we have already seen on this blog, and throughout scientific literature, glaciers that flow into large bodies of water retreat somewhat independent of climate, contrasted with the traditional response of warmer temperatures driving retreat. The question is, how much does the lake actually affect Bridge Glacier’s retreat?

One easy way to figure out glacier retreat rates is to check Landsat Imagery (available easily through their aptly named “LandsatLook Viewer“). Satellites capture images roughly every 16 or so days. Unfortunately, if you’re studying an area that is cloudy often, many of the images will be blobs of cloud (which can look really cool, but doesn’t really help reconstruct glacial histories). Landsat images for Bridge Glacier go back to 1972, with a few gaps in the data due to clouds and low temporal resolutions in the 70 and early 80s. By collecting an image from late September every year, I was able to compare two sequential images and measure how far the glacier retreated.  Putting them all  together, here is an animation of Bridge Glacier 1972-2012.


Bridge Glacier 1972-2012. If the animation isn’t running on your browser, click the picture.

And again putting it into a “science form” in a graph (below):


(a) Bridge Glacier cumulative retreat (b) Winter precipitation anomaly (snowfall) (c) Summer temperature anomaly (d) Mean annual flow anomaly (Bridge River flow). All figures explained in the text.

To get a better handle on the graph, (a) is the cumulative retreat of Bridge Glacier from its position in 1972. Cumulative values are often used in glacier literature because individual years have a lot of variability, which can make it harder to see the dominant trend.  (b) is the winter precipitation anomaly (November-April inclusive). Anomalies are often used in climate science to clearly illustrate whether any given year was above or below average. For this graph, average winter precipitation (snowfall as water equivalent to eliminate snow density discrepancies) was taken for 1972-2012. (c) is the summer temperature anomaly (May-October). Again, positive (red) values indicate hotter than normal summers. (d) is the mean annual flow of Bridge River at the edge of the glacier. Mean Annual Flow (MAF) is a measure of how much water passes through the Bridge River, and is an excellent indicator of how much melt there was in any given year.

The first thing that jumps out at me in this graph, is that the retreat rate is ‘step-like’.  Until 1991, the glacier is retreating relatively consistently, but that summer, things become more irregular. 1991 and 1992 contain large retreats, but then the glacier stays comparatively constant for a couple years until it retreats again dramatically in a couple bursts. In fact, most of the retreat since 1991 occurs in a couple years of large bursts of dramatic retreats.

One of the largest retreats occurred in 2005 between July 27 and August 15:


July 27, 2005

August 12, 2005


September 5, 2005

Hopefully this photographic evidence is convincing enough that this ‘step-like’ or ‘staircase’ retreat is a product of calving as the glacier terminus is destabilized by the lake that it is floating in. The question that remains, though, is how much of this can we blame on Bridge Lake, and how much of it is a product of a changing climate.

To do this, we can run a numerical/thought experiment: How would Bridge Glacier have retreated if Bridge Lake wasn’t there? 

We’ve already discussed in the blog how a glacier’s change in length is a product of changes in temperature, buffered by its individual climatic sensitivity, and the period it takes for this change in temperature to fully affect the terminus, known as the response time.  If calculate these variables for Bridge Glacier, and combine it with temperature data, we can predict how the glacier would have retreated had it not been for the lake.


Modeled retreat for Bridge Glacier. The LOESS line is the modeled retreat rate smoothed to even out the statistical ‘noise’ of temperature data.

What this shows is that until 1991, climate projected retreat is very close to what we actually observed at Bridge Glacier. However, from 1991 onwards, once Bridge enters the ‘staircase’ stage, it retreats a lot faster than projected. If we go back to the animation of Bridge Glacier’s retreat, we can see that 1991 is, not coincidentally, when we start to see icebergs in the lake. All of this suggests, once again, that once the glacier begins to discharge icebergs, its retreat becomes less a product of warm temperatures, and more of calving events.

If calving is in fact driving the accelerated retreat of Bridge Glacier, as this model suggests, it isn’t all bad news. Eventually, the glacier will retreat far enough back, and high enough up, that it will no longer spill into the lake. Once the glacier reaches this point, it should, once again, retreat more in line with the more gradual climate-controlled retreat (albeit still retreat!) projected in the model. Once it does so, it will have ended its calving phase, and will once again respond more directly to climatic trends.

Further Reading:

If you want to read the nitty gritty details, I’ve done a more technical write-up of this project. You can download it here: Bridge_Glacier_Retreat.


10 responses to “Bridge Glacier and the Life-Cycle of a Calving Glacier

  1. Thanks for posting your research and images – I love the time sequence Landsat images. I live in central Wisconsin just to the west of the terminal moraine from the Wisconsin Glaciation. I have become fascinated by the landscape left behind by this event and enjoy learning about modern glaciation.

  2. Do you see as the best following glaciers as analogs for Bridge Glacier, Patterson Glacier, a href=””>Speel Glacier, a href=””>JacobsonGlacier, a href=””>Porcupine Glacier ?

  3. Sorry I messed up the links, the opening bracket issue. Other than Jacobsen I have observed plenty of tabular icebergs for each. Patterson Glacier and Porcupine more recently than Speel. Wedgemount is quite small compared to the rest of these and I do not think as good an analog. Columbia Glacier, Columbia Icefield would be another example.

    • Columbia Glacier looks really cool – those crevasses are massive! There are some great images in your blog of it! My guess is that Columbia flows a lot faster than Bridge (it has roughly the same elevation range, but Bridge is about 18 km long (3x the length of Columbia). Based on the way I modeled Bridge’s retreat, Columbia would have a much faster response time. Based on those images though, it certainly looks like it, and Porcupine, had/have similar calving regimes.

  4. Pingback: Chomolhari – Out of the Steppe | Matt Chernos·

  5. Pingback: What’s going on at Bridge Glacier? – Time-Lapse Photography | Matt Chernos·

    • Hey cembra,

      We fly in with the fine folks at Tyax Air/Adventures. It would be possible to hike, although a lot more arduous. You could hike overland from Salal Creek (at the top of the Lilooet Valley near Keyhole Falls (this would be sans-trail after you leave the Salal Creek trail). Alternatively, folks have exited the area via Bridge River, although to get to the Bridge FSR you need to ford the river, which could be quite dangerous in certain conditions. Skiing is probably your best bet for self-supported access to Bridge Glacier.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s